
Linear Linked Structure

1 / 62

1. What Are Linear Structures?

2. The Unordered Linked List

3. The Ordered Linked List

4. Other types of Linked list

2 / 62

3.19 Lists

3 / 62

Throughout the discussion of basic data structures, we will use Python lists to implement
the abstract data types presented. However, other types of data structure exists.

4 / 62

Throughout the discussion of basic data structures, we will use Python lists to implement
the abstract data types presented. However, other types of data structure exists.

A list is a collection of items where each item holds a relative position with respect to the
others. More specifically, we will refer to this type of list as an unordered list. We can
consider the list as having a first item, a second item, a third item, and so on. For
simplicity we will assume that lists cannot contain duplicate items.

4 / 62

3.20 The Unordered Linked List

5 / 62

The structure of an unordered list is a collection of items where each item holds a relative
position with respect to the others. Some possible unordered list operations are given
below:

6 / 62

The structure of an unordered list is a collection of items where each item holds a relative
position with respect to the others. Some possible unordered list operations are given
below:

List() creates a new list that is empty. It needs no parameters and returns an
empty list.
add(item) adds a new item to the head of list. It needs the item and returns
nothing. Assume the item is not already in the list.
remove(item) removes the item from the list. It needs the item and modifies the
list. Raise an error if the item is not present in the list.

6 / 62

The structure of an unordered list is a collection of items where each item holds a relative
position with respect to the others. Some possible unordered list operations are given
below:

List() creates a new list that is empty. It needs no parameters and returns an
empty list.
add(item) adds a new item to the head of list. It needs the item and returns
nothing. Assume the item is not already in the list.
remove(item) removes the item from the list. It needs the item and modifies the
list. Raise an error if the item is not present in the list.

search(item) searches for the item in the list. It needs the item and returns a
Boolean value.
is_empty() tests to see whether the list is empty. It needs no parameters and
returns a Boolean value.
size() returns the number of items in the list. It needs no parameters and returns
an integer.

6 / 62

append(item) adds a new item to the end of the list making it the last item in the
collection. It needs the item and returns nothing. Assume the item is not already in
the list.
index(item) returns the position of item in the list. It needs the item and returns
the index. Assume the item is in the list.

7 / 62

append(item) adds a new item to the end of the list making it the last item in the
collection. It needs the item and returns nothing. Assume the item is not already in
the list.
index(item) returns the position of item in the list. It needs the item and returns
the index. Assume the item is in the list.

insert(pos, item) adds a new item to the list at position pos. It needs the item
and returns nothing. Assume the item is not already in the list and there are
enough existing items to have position pos.
pop() removes and returns the last item in the list. It needs nothing and returns
an item. Assume the list has at least one item.
pop(pos) removes and returns the item at position pos. It needs the position and
returns the item. Assume the item is in the list.

7 / 62

3.21 Implementing an Unordered Linked List:
Linked Lists

8 / 62

In order to implement an unordered list, we will construct what is commonly known as a
linked list. Recall that we need to be sure that we can maintain the relative positioning of
the items. However, there is no requirement that we maintain that positioning in
contiguous memory.

9 / 62

In order to implement an unordered list, we will construct what is commonly known as a
linked list. Recall that we need to be sure that we can maintain the relative positioning of
the items. However, there is no requirement that we maintain that positioning in
contiguous memory.

9 / 62

In order to implement an unordered list, we will construct what is commonly known as a
linked list. Recall that we need to be sure that we can maintain the relative positioning of
the items. However, there is no requirement that we maintain that positioning in
contiguous memory.

For example, consider the collection of items. It appears that these values have been
placed randomly.

9 / 62

If we can maintain some explicit information in each item, namely the location of the
next item, then the relative position of each item can be expressed by simply following
the link from one item to the next.

10 / 62

If we can maintain some explicit information in each item, namely the location of the
next item, then the relative position of each item can be expressed by simply following
the link from one item to the next.

10 / 62

If we can maintain some explicit information in each item, namely the location of the
next item, then the relative position of each item can be expressed by simply following
the link from one item to the next.

It is important to note that the location of the first item of the list must be explicitly
specified. Once we know where the first item is, the first item can tell us where the second
is, and so on. The external reference is often referred to as the head of the list. Similarly,
the last item needs to know that there is no next item.

10 / 62

3.21.1 The Node Class

11 / 62

The basic building block for the linked list implementation is the node. Each node object
must hold at least two pieces of information. First, the node must contain the list item
itself. We will call this the data field of the node. In addition, each node must hold a
reference to the next node.

12 / 62

The basic building block for the linked list implementation is the node. Each node object
must hold at least two pieces of information. First, the node must contain the list item
itself. We will call this the data field of the node. In addition, each node must hold a
reference to the next node.

In [18]: class Node:
 """A node of a linked list"""
 def __init__(self, node_data):
 self._data = node_data
 self._next = None
 def get_data(self):
 """Get node data"""
 return self._data
 def set_data(self, node_data):
 """Set node data"""
 self._data = node_data

 def get_next(self):
 """Get next node"""
 return self._next
 def set_next(self, node_next):
 """Set next node"""
 self._next = node_next

 data = property(get_data, set_data)
 next = property(get_next, set_next)

12 / 62

Note that hidden fields _data and _next of the Node class are turned into properties
and can be accessed as data and next , respectively!

13 / 62

Note that hidden fields _data and _next of the Node class are turned into properties
and can be accessed as data and next , respectively!

We create Node objects in the usual way.

13 / 62

Note that hidden fields _data and _next of the Node class are turned into properties
and can be accessed as data and next , respectively!

We create Node objects in the usual way.

In [19]: temp = Node(93)
temp.data

Out[19]: 93

13 / 62

Note that hidden fields _data and _next of the Node class are turned into properties
and can be accessed as data and next , respectively!

We create Node objects in the usual way.

In [19]: temp = Node(93)
temp.data

Out[19]: 93

13 / 62

The special Python reference value None will play an important role in the Node class
and later in the linked list itself. A reference to None will denote the fact that there is no
next node.

Note in the constructor that a node is initially created with next set to None . It is always a
good idea to explicitly assign None to your initial next reference values.

14 / 62

3.21.2 The UnorderedList Class

15 / 62

The unordered list will be built from a collection of nodes, each linked to the next by
explicit references. With this in mind, the UnorderedList class must maintain a
reference to the first node. Code below shows the constructor. Note that each list object
will maintain a single reference to the head of the list.

16 / 62

The unordered list will be built from a collection of nodes, each linked to the next by
explicit references. With this in mind, the UnorderedList class must maintain a
reference to the first node. Code below shows the constructor. Note that each list object
will maintain a single reference to the head of the list.

In [20]: class UnorderedList:
 def __init__(self):
 self.head = None

16 / 62

The unordered list will be built from a collection of nodes, each linked to the next by
explicit references. With this in mind, the UnorderedList class must maintain a
reference to the first node. Code below shows the constructor. Note that each list object
will maintain a single reference to the head of the list.

In [20]: class UnorderedList:
 def __init__(self):
 self.head = None

In [21]: my_list = UnorderedList()

16 / 62

The unordered list will be built from a collection of nodes, each linked to the next by
explicit references. With this in mind, the UnorderedList class must maintain a
reference to the first node. Code below shows the constructor. Note that each list object
will maintain a single reference to the head of the list.

In [20]: class UnorderedList:
 def __init__(self):
 self.head = None

In [21]: my_list = UnorderedList()

The assignment statement creates the linked list representation

16 / 62

The unordered list will be built from a collection of nodes, each linked to the next by
explicit references. With this in mind, the UnorderedList class must maintain a
reference to the first node. Code below shows the constructor. Note that each list object
will maintain a single reference to the head of the list.

In [20]: class UnorderedList:
 def __init__(self):
 self.head = None

In [21]: my_list = UnorderedList()

The assignment statement creates the linked list representation

16 / 62

As we discussed in the Node class, the special reference None will again be used to state
that the head of the list does not refer to anything. Eventually, the example list given
earlier will be represented by a linked list as shown below:

17 / 62

As we discussed in the Node class, the special reference None will again be used to state
that the head of the list does not refer to anything. Eventually, the example list given
earlier will be represented by a linked list as shown below:

17 / 62

As we discussed in the Node class, the special reference None will again be used to state
that the head of the list does not refer to anything. Eventually, the example list given
earlier will be represented by a linked list as shown below:

The head of the list refers to the first node which contains the first item of the list. In turn,
that node holds a reference to the next node (the next item), and so on.

It is very important to note that the UnorderedList class itself does not contain any
node objects. Instead it contains a single reference to only the first node in the linked
structure.

17 / 62

The is_empty() method, shown below, simply checks to see if the head of the list is a
reference to None . The result of the boolean expression self.head == None will only
be true if there are no nodes in the linked list.

18 / 62

The is_empty() method, shown below, simply checks to see if the head of the list is a
reference to None . The result of the boolean expression self.head == None will only
be true if there are no nodes in the linked list.

In [22]: def is_empty(self):
 return self.head == None

18 / 62

So how do we get items into our list? We need to implement the add() method.
However, before we can do that, we need to address the important question of where in
the linked list to place the new item.

19 / 62

So how do we get items into our list? We need to implement the add() method.
However, before we can do that, we need to address the important question of where in
the linked list to place the new item.

Since this list is unordered, the specific location of the new item with respect to the other
items already in the list is not important. The new item can go anywhere. With that in
mind, it makes sense to place the new item in the easiest location possible.

19 / 62

So how do we get items into our list? We need to implement the add() method.
However, before we can do that, we need to address the important question of where in
the linked list to place the new item.

Since this list is unordered, the specific location of the new item with respect to the other
items already in the list is not important. The new item can go anywhere. With that in
mind, it makes sense to place the new item in the easiest location possible.

Recall that the linked list structure provides us with only one entry point, the head of the
list. All of the other nodes can only be reached by accessing the first node and then
following next links. This means that the easiest place to add the new node is right at the
head, or beginning, of the list

19 / 62

my_list.add(31)
my_list.add(77)
my_list.add(17)
my_list.add(93)
my_list.add(26)
my_list.add(54)

20 / 62

my_list.add(31)
my_list.add(77)
my_list.add(17)
my_list.add(93)
my_list.add(26)
my_list.add(54)

Note that since 31 is the first item added to the list, it will eventually be the last node on
the linked list as every other item is added ahead of it. Also, since 54 is the last item
added, it will become the data value in the first node of the linked list.

20 / 62

Therefore, we can create a new node and places the item as its data. Now we must
complete the process by linking the new node into the existing structure.

21 / 62

Therefore, we can create a new node and places the item as its data. Now we must
complete the process by linking the new node into the existing structure.

In [23]: def add(self, item):
 temp = Node(item)
 temp.set_next(self.head)
 self.head = temp

21 / 62

Therefore, we can create a new node and places the item as its data. Now we must
complete the process by linking the new node into the existing structure.

In [23]: def add(self, item):
 temp = Node(item)
 temp.set_next(self.head)
 self.head = temp

21 / 62

The order of the two steps described above is very important. What happens if the order
of line 3 and line 4 is reversed?

22 / 62

The order of the two steps described above is very important. What happens if the order
of line 3 and line 4 is reversed?

22 / 62

The order of the two steps described above is very important. What happens if the order
of line 3 and line 4 is reversed?

Since the head was the only external reference to the list nodes, all of the original nodes
are lost and can no longer be accessed.

22 / 62

The next methods that we will implement – size() , search() , and remove() – are all
based on a technique known as linked list traversal. Traversal refers to the process of
systematically visiting each node.

23 / 62

The next methods that we will implement – size() , search() , and remove() – are all
based on a technique known as linked list traversal. Traversal refers to the process of
systematically visiting each node.

To do this we use an external reference that starts at the first node in the list. As we visit
each node, we move the reference to the next node by "traversing" the next reference.

23 / 62

To implement the size() method, we need to traverse the linked list and keep a count
of the number of nodes that occurred.

24 / 62

To implement the size() method, we need to traverse the linked list and keep a count
of the number of nodes that occurred.

In [24]: def size(self):
 current = self.head
 count = 0
 while current is not None:
 count = count + 1
 current = current.get_next()

 return count

24 / 62

To implement the size() method, we need to traverse the linked list and keep a count
of the number of nodes that occurred.

In [24]: def size(self):
 current = self.head
 count = 0
 while current is not None:
 count = count + 1
 current = current.get_next()

 return count

24 / 62

Searching for a value in a linked list implementation of an unordered list also uses the
traversal technique. As we visit each node in the linked list we will ask whether the data
stored there matches the item we are looking for.

25 / 62

Searching for a value in a linked list implementation of an unordered list also uses the
traversal technique. As we visit each node in the linked list we will ask whether the data
stored there matches the item we are looking for.

In [25]: def search(self, item):
 current = self.head
 while current is not None:
 if current.data == item:
 return True
 current = current.get_next()

 return False

25 / 62

Searching for a value in a linked list implementation of an unordered list also uses the
traversal technique. As we visit each node in the linked list we will ask whether the data
stored there matches the item we are looking for.

In [25]: def search(self, item):
 current = self.head
 while current is not None:
 if current.data == item:
 return True
 current = current.get_next()

 return False

If we do get to the end of the list, that means that the item we are looking for must not
be present. Also, if we do find the item, there is no need to continue.

25 / 62

my_list.search(17)

26 / 62

my_list.search(17)

26 / 62

my_list.search(17)

Since 17 is in the list, the traversal process needs to move only to the node containing 17.
At that point, the condition in line 4 becomes True and we return the result of the
search.

26 / 62

The remove() method requires two logical steps. First, we need to traverse the list
looking for the item we want to remove. Once we find the item, we must remove it. If the
item is not in the list, our method should raise a ValueError .

27 / 62

The remove() method requires two logical steps. First, we need to traverse the list
looking for the item we want to remove. Once we find the item, we must remove it. If the
item is not in the list, our method should raise a ValueError .

The first step is very similar to search. Starting with an external reference set to the head
of the list, we traverse the links until we discover the item we are looking for.

27 / 62

The remove() method requires two logical steps. First, we need to traverse the list
looking for the item we want to remove. Once we find the item, we must remove it. If the
item is not in the list, our method should raise a ValueError .

The first step is very similar to search. Starting with an external reference set to the head
of the list, we traverse the links until we discover the item we are looking for.

When the item is found and we break out of the loop, current will be a reference to the
node containing the item to be removed. But how do we remove it?

27 / 62

In order to remove the node containing the item, we need to modify the link in the
previous node so that it refers to the node that comes after current. Unfortunately, there
is no way to go backward in the linked list. Since current refers to the node ahead of
the node where we would like to make the change, it is too late to make the necessary
modification!

28 / 62

In order to remove the node containing the item, we need to modify the link in the
previous node so that it refers to the node that comes after current. Unfortunately, there
is no way to go backward in the linked list. Since current refers to the node ahead of
the node where we would like to make the change, it is too late to make the necessary
modification!

The solution to this dilemma is to use two external references as we traverse down the
linked list. current will behave just as it did before, marking the current location of the
traversal. The new reference, which we will call previous , will always travel one node
behind current . That way, when current stops at the node to be removed,
previous will refer to the proper place in the linked list for the modification!

28 / 62

In [26]: def remove(self, item):
 current = self.head
 previous = None

 while current is not None:
 if current.data == item:
 break
 previous = current
 current = current.get_next()

 if current is None:
 raise ValueError("{} is not in the list".format(item))
 if previous is None:
 self.head = current.get_next()
 else:
 previous.next = current.get_next()

29 / 62

In [26]: def remove(self, item):
 current = self.head
 previous = None

 while current is not None:
 if current.data == item:
 break
 previous = current
 current = current.get_next()

 if current is None:
 raise ValueError("{} is not in the list".format(item))
 if previous is None:
 self.head = current.get_next()
 else:
 previous.next = current.get_next()

29 / 62

Figure below shows the movement of previous and current as they progress down
the list looking for the node containing the value 17.

30 / 62

Figure below shows the movement of previous and current as they progress down
the list looking for the node containing the value 17.

30 / 62

31 / 62

Once the searching step of the remove has been completed, we need to remove the node
from the linked list. Figure above shows the link that must be modified.

31 / 62

Once the searching step of the remove has been completed, we need to remove the node
from the linked list. Figure above shows the link that must be modified.

However, there is a special case that needs to be addressed. If the item to be removed
happens to be the first item in the list, then current will reference the first node in the
linked list. This also means that previous will be None . We said earlier that previous
would be referring to the node whose next reference needs to be modified in order to
complete the removal. In this case, it is not previous but rather the head of the list that
needs to be changed.

31 / 62

32 / 62

Line 13 allows us to check whether we are dealing with the special case described above.
If previous did not move, it will still have the value None when the loop breaks. In that
case, the head of the list is modified to refer to the node after the current node (line 14),
in effect removing the first node from the linked list. However, if previous is not None ,
the node to be removed is somewhere down the linked list structure.

32 / 62

Line 13 allows us to check whether we are dealing with the special case described above.
If previous did not move, it will still have the value None when the loop breaks. In that
case, the head of the list is modified to refer to the node after the current node (line 14),
in effect removing the first node from the linked list. However, if previous is not None ,
the node to be removed is somewhere down the linked list structure.

In this case the previous reference is providing us with the node whose next reference
must be changed. Line 16 modifies the next property of the previous to accomplish the
removal. Note that in both cases the destination of the reference change is
current.get_next() .

32 / 62

Line 13 allows us to check whether we are dealing with the special case described above.
If previous did not move, it will still have the value None when the loop breaks. In that
case, the head of the list is modified to refer to the node after the current node (line 14),
in effect removing the first node from the linked list. However, if previous is not None ,
the node to be removed is somewhere down the linked list structure.

In this case the previous reference is providing us with the node whose next reference
must be changed. Line 16 modifies the next property of the previous to accomplish the
removal. Note that in both cases the destination of the reference change is
current.get_next() .

You could also add a header node to simplify the process and this is left as exercise.

32 / 62

In [27]: import sys
sys.path.append("../pythonds3/")

33 / 62

In [28]: from pythonds3.basic import UnorderedList

my_list = UnorderedList()

my_list.add(31)
my_list.add(77)
my_list.add(17)
my_list.add(93)
my_list.add(26)
my_list.add(54)

print(my_list)
print(my_list.size())
print(my_list.search(93))
print(my_list.search(100))

[54, 26, 93, 17, 77, 31]
6
True
False

34 / 62

In [29]: my_list.add(100)
print(my_list.search(100))
print(my_list.size())

my_list.remove(54)
print(my_list.size())
my_list.remove(93)
print(my_list.size())
my_list.remove(31)
print(my_list.size())
print(my_list.search(93))

True
7
6
5
4
False

35 / 62

3.22. The Ordered Linked List

36 / 62

We will now consider a type of list known as an ordered list. For example, if the list of
integers shown in previous section were an ordered list (ascending order), then it could be
written as 17, 26, 31, 54, 77, and 93.

37 / 62

We will now consider a type of list known as an ordered list. For example, if the list of
integers shown in previous section were an ordered list (ascending order), then it could be
written as 17, 26, 31, 54, 77, and 93.

The structure of an ordered list is a collection of items where each item holds a relative
position that is based upon some underlying characteristic of the item. The ordering is
typically either ascending or descending and we assume that list items have a
meaningful comparison operation that is already defined.

37 / 62

Many of the ordered list operations are the same as those of the unordered list:

38 / 62

Many of the ordered list operations are the same as those of the unordered list:

OrderedList() creates a new ordered list that is empty. It needs no parameters
and returns an empty list.
add(item) adds a new item to the list making sure that the order is preserved. It
needs the item and returns nothing. Assume the item is not already in the list.
remove(item) removes the item from the list. It needs the item and modifies the
list. It will raise an error if the item is not present in the list.
search(item) searches for the item in the list. It needs the item and returns a
Boolean value.

38 / 62

is_empty() tests to see whether the list is empty. It needs no parameters and
returns a Boolean value.
size() returns the number of items in the list. It needs no parameters and returns
an integer.
index(item) returns the position of an item in the list. It needs the item and
returns the index. Assume the item is in the list.
pop() removes and returns the last item in the list. It needs nothing and returns
an item. Assume the list has at least one item.
pop(pos) removes and returns the item at position pos. It needs the position and
returns the item. Assume the item is in the list.

39 / 62

3.23 Implementing an Ordered Linked List

40 / 62

The ordered list of integers given above (17, 26, 31, 54, 77, and 93) can be represented by
a linked structure as shown below.

41 / 62

The ordered list of integers given above (17, 26, 31, 54, 77, and 93) can be represented by
a linked structure as shown below.

41 / 62

The ordered list of integers given above (17, 26, 31, 54, 77, and 93) can be represented by
a linked structure as shown below.

Again, the node and link structure is ideal for representing the relative positioning of the
items.

41 / 62

To implement the OrderedList class, we will use the same technique as seen previously
with unordered lists. Once again, an empty list will be denoted by a head reference to
None :

42 / 62

To implement the OrderedList class, we will use the same technique as seen previously
with unordered lists. Once again, an empty list will be denoted by a head reference to
None :

In [31]: class OrderedList:
 def __init__(self):
 self.head = None

42 / 62

To implement the OrderedList class, we will use the same technique as seen previously
with unordered lists. Once again, an empty list will be denoted by a head reference to
None :

In [31]: class OrderedList:
 def __init__(self):
 self.head = None

As we consider the operations for the ordered list, we should note that the is_empty()
and size() methods can be implemented the same as with unordered lists since they
deal only with the number of nodes in the list without regard to the actual item values.

Likewise, the remove() method will work just fine since we still need to find the item and
then link around the node to remove it. The two remaining methods, search() and
add() , will require some modification.

42 / 62

The search() of an unordered linked list required that we traverse the nodes one at a
time until we either find the item we are looking for or run out of nodes (None).

43 / 62

The search() of an unordered linked list required that we traverse the nodes one at a
time until we either find the item we are looking for or run out of nodes (None).

t turns out that the same approach would work with the ordered list and no changes are
necessary if the item is in the list. However, in the case where the item is not in the list, we
can take advantage of the ordering to stop the search as soon as possible.

43 / 62

The search() of an unordered linked list required that we traverse the nodes one at a
time until we either find the item we are looking for or run out of nodes (None).

t turns out that the same approach would work with the ordered list and no changes are
necessary if the item is in the list. However, in the case where the item is not in the list, we
can take advantage of the ordering to stop the search as soon as possible.

For example, Figure below shows the ordered linked list as a search is looking for the
value 45:

43 / 62

The search() of an unordered linked list required that we traverse the nodes one at a
time until we either find the item we are looking for or run out of nodes (None).

t turns out that the same approach would work with the ordered list and no changes are
necessary if the item is in the list. However, in the case where the item is not in the list, we
can take advantage of the ordering to stop the search as soon as possible.

For example, Figure below shows the ordered linked list as a search is looking for the
value 45:

43 / 62

The code below shows the complete search() method. It is easy to incorporate the new
condition discussed above by adding another check (line 6):

44 / 62

The code below shows the complete search() method. It is easy to incorporate the new
condition discussed above by adding another check (line 6):

In [32]: def search(self,item):
 current = self.head
 while current is not None:
 if current.data == item:
 return True
 if current.data > item:
 return False
 current = current.next

 return False

44 / 62

The code below shows the complete search() method. It is easy to incorporate the new
condition discussed above by adding another check (line 6):

In [32]: def search(self,item):
 current = self.head
 while current is not None:
 if current.data == item:
 return True
 if current.data > item:
 return False
 current = current.next

 return False

We can continue to look forward in the list (line 3). If any node is ever discovered that
contains data greater than the item we are looking for, we will immediately return False .

44 / 62

The most significant method modification will take place in add() . Recall that for
unordered lists, the add method could simply place a new node at the head of the
list. It was the easiest point of access.

45 / 62

The most significant method modification will take place in add() . Recall that for
unordered lists, the add method could simply place a new node at the head of the
list. It was the easiest point of access.

Unfortunately, this will no longer work with ordered lists. It is now necessary that we
discover the specific place where a new item belongs in the existing ordered list.

45 / 62

Assume we have the ordered list consisting of 17, 26, 54, 77, and 93 and we want to add
the value 31. The add method must decide that the new item belongs between 26 and 54:

46 / 62

Assume we have the ordered list consisting of 17, 26, 54, 77, and 93 and we want to add
the value 31. The add method must decide that the new item belongs between 26 and 54:

46 / 62

Assume we have the ordered list consisting of 17, 26, 54, 77, and 93 and we want to add
the value 31. The add method must decide that the new item belongs between 26 and 54:

As we explained earlier, we need to traverse the linked list looking for the place where the
new node will be added!

46 / 62

As we saw with unordered lists, it is necessary to have an additional reference, again
called previous , since current will not provide access to the node that must be
modified.

47 / 62

As we saw with unordered lists, it is necessary to have an additional reference, again
called previous , since current will not provide access to the node that must be
modified.

In [33]: def add(self, item):
 """Add a new node"""
 current = self.head
 previous = None
 temp = Node(item)

 while current is not None and current.data < item:
 previous = current
 current = current.next

 if previous is None:
 temp.next = self.head
 self.head = temp
 else:
 temp.next = current
 previous.next = temp

47 / 62

The OrderedList class with methods discussed thus far can be found below:

48 / 62

The OrderedList class with methods discussed thus far can be found below:

In [34]: from pythonds3.basic import OrderedList

my_list = OrderedList()

my_list.add(31)
my_list.add(77)
my_list.add(17)
my_list.add(93)
my_list.add(26)
my_list.add(54)

print(my_list)
print(my_list.size())
print(my_list.search(93))
print(my_list.search(100))

[17, 26, 31, 54, 77, 93]
6
True
False

48 / 62

3.23.1 Analysis of Linked Lists

49 / 62

To analyze the complexity of the linked list operations, we need to consider whether they
require traversal.

Consider a linked list that has nodes. The is_empty() method is since it requires
one step to check the head reference for None . size() , on the other hand, will always
require steps since there is no way to know how many nodes are in the linked list
without traversing from head to end. Therefore, size() is .

n O(1)

n

O(n)

50 / 62

To analyze the complexity of the linked list operations, we need to consider whether they
require traversal.

Consider a linked list that has nodes. The is_empty() method is since it requires
one step to check the head reference for None . size() , on the other hand, will always
require steps since there is no way to know how many nodes are in the linked list
without traversing from head to end. Therefore, size() is .

n O(1)

n

O(n)

Adding an item to an unordered list will always be since we simply place the new
node at the head of the linked list. However, search() and remove() , as well as
add() for an ordered list, all require the traversal process. Although on average they may
need to traverse only half of the nodes, these methods are all since in the worst
case each will process every node in the list.

O(1)

O(n)

50 / 62

A.1 Other types of Linked list (Optional)

51 / 62

Circularly linked list

52 / 62

In the case of linked lists, there is a more tangible notion of a circularly linked list, as we
can have the tail of the list use its next reference to point back to the head of the list, as
shown below. We call such a structure a circularly linked list.

53 / 62

In the case of linked lists, there is a more tangible notion of a circularly linked list, as we
can have the tail of the list use its next reference to point back to the head of the list, as
shown below. We call such a structure a circularly linked list.

53 / 62

In the case of linked lists, there is a more tangible notion of a circularly linked list, as we
can have the tail of the list use its next reference to point back to the head of the list, as
shown below. We call such a structure a circularly linked list.

A circularly linked list provides a more general model than a standard linked list for data
sets that are cyclic, that is, which do not have any particular notion of a beginning and
end.

53 / 62

A circular view could be used, for example, to describe the order of train stops, or the
order in which players take turns during a game. Even though a circularly linked list has no
beginning or end, per se, we must maintain a reference to a particular node in order to
make use of the list. We use the identifier current to describe such a designated node.
By setting current = current.next , we can effectively advance through the nodes of
the list.

54 / 62

Doubly linked list

55 / 62

In a singly linked list, each node maintains a reference to the node that is immediately
after it. We have demonstrated the usefulness of such a representation when managing a
sequence of elements. However, there are limitations that stem from the asymmetry of a
singly linked list.

56 / 62

In a singly linked list, each node maintains a reference to the node that is immediately
after it. We have demonstrated the usefulness of such a representation when managing a
sequence of elements. However, there are limitations that stem from the asymmetry of a
singly linked list.

We emphasized that we can efficiently insert a node at either end of a singly linked list,
and can delete a node at the head of a list, but we are unable to efficiently delete a node
at the tail of the list. More generally, we cannot efficiently delete an arbitrary node from
an interior position of the list if only given a reference to that node, because we cannot
determine the node that immediately precedes the node to be deleted (yet, that node
needs to have its next reference updated)!

56 / 62

To provide greater symmetry, we define a linked list in which each node keeps an explicit
reference to the node before it and a reference to the node after it. Such a structure is
known as a doubly linked list. These lists allow a greater variety of -time update
operations, including insertions and deletions at arbitrary positions within the list. We
continue to use the term next for the reference to the node that follows another, and we
introduce the term prev for the reference to the node that precedes it.

O(1)

57 / 62

To provide greater symmetry, we define a linked list in which each node keeps an explicit
reference to the node before it and a reference to the node after it. Such a structure is
known as a doubly linked list. These lists allow a greater variety of -time update
operations, including insertions and deletions at arbitrary positions within the list. We
continue to use the term next for the reference to the node that follows another, and we
introduce the term prev for the reference to the node that precedes it.

O(1)

In order to avoid some special cases when operating near the boundaries of a doubly
linked list, it helps to add special nodes at both ends of the list: a header node at the
beginning of the list, and a trailer node at the end of the list. These "dummy" nodes are
known as sentinels (or guards), and they do not store elements of the primary sequence.

57 / 62

A doubly linked list with such sentinels is shown

58 / 62

A doubly linked list with such sentinels is shown

58 / 62

A doubly linked list with such sentinels is shown

For a nonempty list, the header’s next will refer to a node containing the first real element
of a sequence, just as the trailer’s prev references the node containing the last element of
a sequence.

58 / 62

A doubly linked list with such sentinels is shown

For a nonempty list, the header’s next will refer to a node containing the first real element
of a sequence, just as the trailer’s prev references the node containing the last element of
a sequence.

We can treat all insertions in a unified manner, because a new node will always be placed
between a pair of existing nodes. In similar fashion, every element that is to be deleted is
guaranteed to be stored in a node that has neighbors on each side.

58 / 62

59 / 62

59 / 62

59 / 62

60 / 62

60 / 62

60 / 62

References

61 / 62

1. Textbook CH3

62 / 62

	3.19 Lists
	3.20 The Unordered Linked List
	3.21 Implementing an Unordered Linked List:
Linked Lists
	3.21.1 The Node Class
	3.21.2 The UnorderedList Class

	3.22. The Ordered Linked List
	3.23 Implementing an Ordered Linked List
	3.23.1 Analysis of Linked Lists

	A.1 Other types of Linked list (Optional)
	Circularly linked list
	Doubly linked list

	References

